Unit Review

1) solve for cos

$$
5 \cos \theta=-4
$$

3) $\frac{S}{T} \frac{A}{T}$

4) Name Angles

$$
\theta=143.2
$$

2) Find reft (and
snore neg

$$
y=-12
$$

©in $\theta=\frac{4}{8}$ $\cos \theta=8$ $\tan \theta=\frac{4}{x}$

$\sin \theta=\frac{-12}{\sqrt{3}}$
$\cos \theta=\frac{5}{13}$
$\tan \theta=-\frac{2}{3}$
need $r=\sqrt{5^{2}+(-12)^{2}}$

$$
r=13
$$

\#2 Trig Equations $5 \cos \theta+7^{-3}=3^{-7}$

$5 x+7=3$

$$
\cos \theta=\frac{-4}{5}
$$

$$
\cos ^{-1}\left(\cdot \frac{4}{5}\right)
$$

$$
\text { ref } \theta=36.8
$$

$$
\theta=216.8
$$

Ex \#2 $\quad \tan ^{2} \theta-2 \tan \theta-8=0$
D) Solve $\begin{gathered}\text { equation } \\ (\tan \theta-4)(\tan \theta+2)\end{gathered}=0$ $x^{2}-2 x-8=0 \quad \tan \theta=4$ or $\tan \theta=-2$ $x^{2}-2 x-8=0 \quad \tan \theta=4$ or $\tan \theta F-263.4^{\circ}$

$$
(x-4)(x+2)=0
$$

2)
$\theta=75.9$
$\theta=255.9$
$8=116.6$

$$
\theta=\sin \theta
$$

Topic Three - Am biguaus Triangles Given $\angle A=37$

$$
\begin{aligned}
& a=7 \\
& b=9
\end{aligned}
$$

Find all pessibidy yinlues
2. Find $<B$

$$
\begin{array}{ll}
\text { of } c \quad & \frac{7}{\sin 37}=\frac{9}{\sin B}
\end{array}
$$

$$
\text { and } \sin (.77)=50.69 \text { side ca }
$$

side ci
IC -Noe sills

$$
\begin{aligned}
& \angle c_{2}=\angle B-\angle A \\
& C_{2}=50.7-37 \\
& C_{2}=13.7 \\
& \frac{7}{\operatorname{SMFI}=\frac{c_{2}}{\sin 137} \quad Q_{2}=2.7}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Quadratics } \\
& \begin{array}{l}
\text { Solving for } x \text { in an equation } \\
\text { that has } x^{2} \text {. }
\end{array} \\
& \text { \#1 } \quad x^{2}-3 x-28=0 \\
& \text { Factoring } \quad(x-7)(x+4)=0 \\
& x=+7 \text { or }-4 \\
& \text { \#2 } \quad \begin{array}{l}
x x^{2}-8 x=0 \\
x(x-8)=0 \\
x=0 \text { or } 8
\end{array} \\
& \text { Type- Hard factories } \\
& 3 x^{2}-4 x-7=0 \\
& (3 x-7)(x+1)=0 \\
& x=+\frac{7}{3} \text { or }-1
\end{aligned}
$$

$$
\begin{aligned}
& (5 x+2)(x+4)=0 \\
& x=-2 / 5 \text { or }-4 \\
& \text { 姓 } 5 \text { 9 } \quad 9 x^{2}-5 x-3=0 \\
& \begin{array}{ll}
\text { Quad } x=\frac{-b \pm \sqrt{b^{2}-4 a s}}{2 a} & a=9 \\
\text { Formula } & b=-5 \\
\text { Given) } & c=\frac{+5 \pm \sqrt{(-5)^{2-4(9)(-3)}}}{2(9)}
\end{array} \\
& \begin{array}{l}
x=\frac{5+\sqrt{133}}{18} \text { or } \frac{5-\sqrt{133}}{18} \\
x=.91 \text { on }-.36
\end{array} \\
& \text { Last Part } \\
& \text { if } x=\frac{-b \pm \sqrt{b^{2-4 a s}}}{2 a} \\
& \text { then } b^{2}-4 a c \text { determines } \\
& b^{2}-4 a c>02 \text { powers many solutions } \\
& \begin{array}{ll}
b^{2}-4 a c=0 & 1 \text { solution } \\
b^{2}-4 a c<0 & \text { No real solution }
\end{array} \\
& \begin{array}{ll}
8 x^{2}+5 x & \quad \text { - }-4 a e \\
2 x^{2}+8 x+8=0 & 64-4(2)(8) \\
& \therefore 4-64=0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sum of roots }=\frac{-b}{a} \\
& \frac{\text { prod }}{2=2} \text { of roots }=\frac{c}{a}
\end{aligned}
$$

if $(x+2)(3 x-1)=0$

$$
\begin{array}{cc}
7 x^{2}-9 x-2=0 & \text { sum of roots } \\
& \frac{-b}{a} \\
\operatorname{prod} u c t \\
\frac{c}{a} & \frac{-2}{7}
\end{array}
$$

\#3 Suppose you have roots

$$
\begin{aligned}
& \frac{2}{3} \text { and }-\frac{4}{5} \quad \text { sum }=\frac{2}{3}+\frac{-4}{5} \frac{10-12}{15} \\
& \text { multels } 2-4
\end{aligned}
$$

Find $a x^{2}+b x+c=0$ multiply $\frac{2}{3} \cdot \frac{-4}{5}=\frac{-8}{15}$

$$
\begin{array}{ll}
15 x^{2}+2 x-8=0 & \text { sum }=\frac{-2}{15}=a=+2 \\
& \text { product }=\frac{-8}{15}=c
\end{array}
$$

